
Nonholonomic Control
Ziteng (Ender) Ji Yuvan Sharma

Abstract—This project explores nonholonomic path planning
for a front-wheel steering car model, also known as the bicycle
model. The primary goal is to develop multiple motion planners
that respect the system’s nonholonomic constraints, including
an optimization-based planner, a modified Rapidly-exploring
Random Tree (RRT) planner, and a sinusoidal path planner.
The optimization-based planner, implemented using CasADi,
formulates the planning problem as a nonlinear optimization
problem with constraints on state variables, control inputs, and
obstacle avoidance. This planner minimizes a quadratic cost func-
tion while ensuring dynamically feasible trajectories. The RRT
planner extends traditional sampling-based motion planning by
incorporating system-specific motion primitives. The sinusoidal
planner, inspired by Sastry and Murray, generates feasible paths
through sinusoidal steering maneuvers. This project demon-
strates the challenges of planning for nonholonomic systems and
evaluates these different approaches for trajectory generation,
emphasizing the trade-offs between optimality, computational
efficiency, and feasibility in real-world applications.

I. INTRODUCTION

Path planning for nonholonomic systems is crucial in
robotics and autonomous navigation, where vehicles face mo-
tion constraints that limit their maneuverability. This project
implements and compares three motion planning approaches
for a bicycle-model robot: an optimization-based planner, a
Rapidly-exploring Random Tree (RRT) planner, and a sinu-
soidal path planner.

The optimization-based planner solves a nonlinear opti-
mization problem to generate a feasible path while enforcing
constraints on state, control inputs, and obstacles. The RRT
planner focuses more on randomly sampling the configuration
space to build up a network of system-specific motion primi-
tives, and lastly, the sinusoidal planner constructs trajectories
using sinusoidal steering maneuvers.

These methods are widely applicable in autonomous driv-
ing, robotic navigation, and industrial automation, where
balancing computational efficiency and motion feasibility is
essential. This project explores their strengths and trade-offs
to enhance motion planning for real-world systems.

II. METHOD

A. Optimization Planner

As described previously, the optimization-based planner
formulates nonholonomic path planning as a nonlinear opti-
mization problem.

1) Optimization Planner Implementation: The trajectory is
discretized with state variables q ∈ R4×(N+1), where each
column represents

qt =
[
xt, yt, θt, ϕt

]T
, (1)

and control inputs u ∈ R2×N , where

ut =
[
u1, u2

]T
. (2)

We set N = 1000 and δt = 0.01 seconds to balance
trajectory smoothness and computational efficiency; a detailed
explanation can be found in the next section.

To warm-start the solver, an initial guess is generated via
linear interpolation between qstart and qgoal, ensuring a straight-
line initialization in configuration space, even if it does not
fully respect nonholonomic constraints. The system dynamics
are discretized using the Euler method:

xt+1 = xt + u1 cos(θt) · δt (3)
yt+1 = yt + u1 sin(θt) · δt (4)

θt+1 = θt +
u1

L
tan(ϕt) · δt (5)

ϕt+1 = ϕt + u2 · δt (6)

where L is the axle-to-axle length. This ensures computa-
tional efficiency while capturing nonholonomic behavior.

The cost function used for the optimization problem min-
imizes deviation from the goal and excessive control effort.
Specifically, the state cost penalizes deviation from qgoal using:

(qt − qgoal)
TQ(qt − qgoal) (7)

while the control cost minimizes input magnitudes:

uT
t Rut (8)

and the terminal cost ensures proximity to qgoal:

(qN − qgoal)
TP (qN − qgoal) (9)

where Q, R, and P balance tracking accuracy and control
effort.

Constraints are added to the problem to ensure feasibility
by enforcing state and control limits:

qmin ≤ qt ≤ qmax, umin ≤ ut ≤ umax (10)

while obstacle avoidance is modeled as circular constraints:

(xt − xobs)
2 + (yt − yobs)

2 ≥ r2obs (11)

for each obstacle at (xobs, yobs) with radius robs. Initial and
final state constraints ensure the trajectory starts and ends at
the correct locations.

2) Trajectory Discretization: Choosing N and δt: In the
current implementation, we chose N = 1000 and δt = 0.01.
These values were selected to balance trajectory smoothness
and computational efficiency. Higher N allows for a finer res-
olution of the path, ensuring the system respects the nonholo-
nomic constraints while moving towards the goal. Smaller δt
results in more frequent control updates, improving accuracy
but increasing computational cost. The product Nδt = 10
seconds ensures the planner has sufficient time to generate a
feasible path within a reasonable execution window.

3) Generalize N and δt for Arbitrary Goal States: While
the chosen values work well for this scenario, they must be
adapted dynamically for different goal states. Several heuris-
tics can guide this selection. Firstly, a distance-based heuristic
can be used, where the required number of timesteps should
scale with the Euclidean distance between the start and goal
positions:

N ∝
∥qgoal − qstart∥

vmaxδt

where vmax is the maximum velocity of the robot. This ensure
that longer trajectories have a sufficient number of waypoints.
We can also use velocity-dependent adjustment to decide the
size of the step δt, as higher velocities require smaller δt to
prevent large discretization errors, and lower velocities allow
for larger timesteps. Lastly, the value of N can be adjusted in
scenarios where the solver detects constraint violations (e.g.,
collision with obstacles, dynamic infeasibility); iteratively in-
creasing N until feasibility is achieved is a good heuristic for
this purpose.

B. RRT Planner

The RRT planner is a widely used sampling-based mo-
tion planning algorithm designed for high-dimensional and
constrained configuration spaces. Unlike traditional graph-
based methods, RRT incrementally builds a tree that effi-
ciently explores feasible paths by randomly sampling the
configuration space and expanding the tree in dynamically
feasible directions. This makes RRT particularly well-suited
for nonholonomic systems, such as the front-wheel steering
car model, where constraints limit the set of possible motions.

1) RRT Planner Implementation & Design: Our implemen-
tation of the RRT planner follows the standard framework
while incorporating modifications to accommodate the non-
holonomic constraints of the front-wheel steering car model.
The planner operates in a four-dimensional configuration space
C, where each state is defined as

q = (x, y, θ, ϕ),

representing the vehicle’s position, heading angle, and steer-
ing angle. The algorithm incrementally expands a search tree
from an initial configuration qstart toward a goal configuration
qgoal.

At each iteration, the planner first samples a new random
configuration qrand from the configuration space. To determine
the next expansion step, the nearest neighbor search identifies

the closest node qnear in the existing tree using a distance
metric (which is discussed in the next section). Instead of
directly interpolating between qnear and qrand, a local motion
plan is generated to respect the vehicle’s dynamic constraints.
This motion plan consists of a motion primitive (selected from
a set), which applies dynamically feasible control inputs over
a short time horizon ∆t to get the vehicle as close to qrand as
possible. To accurately check which primitive works best, we
simulated the dynamics of the robot and calculated the end
position for each primitive. A prefix of the generated motion
plan is then added as an edge to the graph, with the endpoint
being qnew, the point where the prefix ends. The RRT algorithm
then loops over this process, with collision checks used to
avoid adding incorrect or infeasible configurations and paths.

2) Distance Metric: In RRT-based motion planning, the
choice of the distance function is crucial, as it determines how
new configurations are selected for expanding the search tree.
Directly computing Euclidean distance is infeasible for our use
case due to the need to accurately calculate angular distance
as well. We thus use the complex number representation of
SO(2) space to convert the angle θ into a = cos θ, b = sin θ.
This gives us the new tuple (x, y, a, b) for each state, following
which the standard Euclidean norm is used as shown in the
equation below. This approach was borrowed from Lavalle [2].

d((x1, y1, θ1), (x2, y2, θ2))

=
√
(x2 − x1)2 + (y2 − y1)2 + (a2 − a1)2 + (b2 − b1)2

We found this metric to be effective in accurately capturing
distances in the configuration space, as it also takes into
account the periodic nature of θ.

3) Sampling Method: In addition to the distance metric,
the sampling strategy plays a significant role in improving
the efficiency and speed of the RRT planner. Instead of
uniformly sampling the entire configuration space, our im-
plementation incorporates the goal zoom strategy to improve
search efficiency. This strategy involves refining the search
by sampling within a shrinking radius centered around qgoal.
Specifically, the algorithm selects samples from a ball of radius
min d(xi, g), where x1, . . . , xn are the existing nodes in the
tree, and d is the distance function. This technique helps
concentrate sampling in promising regions, ensuring finer
granularity as the tree nears the goal. We found this strategy
to improve the speed of RRT significantly compared to when
goal bias sampling was used, which is mostly because goal
zoom allows for random sampling around the goal while goal
bias strictly returns the goal itself. In cases where reaching
the goal exactly is difficult or even infeasible for the motion
primitives from the current tree, it becomes difficult for the
tree to grow in meaningful ways with goal bias sampling.

C. Sinusoid Planner

The sinusoidal planner offers a structured approach to
nonholonomic control by leveraging sinusoidal control inputs
to achieve smooth and feasible trajectories. This section details
the design and implementation of the sinusoidal planner,

Fig. 1. The motion primitives used for RRT, graphed with start point
[5, 5, 0, 0]. The final version we used had around 200 primitives, made
from different combinations of linear and angular velocity. All primitives are
graphed above, with the legend only having a subset for clarity.

followed by an analysis of how input constraints, state bounds,
and singularities were addressed in the formulation.

1) Sinusoid Planner Implementation & Design: The sinu-
soidal planner generates motion trajectories by sequentially
modifying x, ϕ, α, and y to reach the goal state. Given an
initial state s0 = (x0, y0, θ0, ϕ0) and a goal state sg =
(xg, yg, θg, ϕg), the planner produces a trajectory that adheres
to the bicycle model dynamics.

The planning process consists of four key steering func-
tions: steer(x), steer(ϕ), steer(α), and steer(y), each generat-
ing control inputs u1 (linear velocity) and u2 (steering rate).

2) Input Constraints & State Bounds: To enforce input
constraints, the planner must restrict the magnitude of control
inputs such that

|u1| ≤ u1,max, |u2| ≤ u2,max.

Since steer(x), steer(ϕ) set a constant linear/angular veloc-
ity, we implement the input constraints for these functions
heuristically by giving them enough time to complete the
motion. Additionally, we found that limiting the magnitudes
for the sinusoidal steering in steer(α), steer(y) based on the
relation v1 = u1 ·cos θ was sufficient for generating plans that
satisfied all input constraints. We did not explicitly set any
state bounds as we found the trajectories that were generated
to be well within the bounds of the configuration space, and
enforcing the input constraints was enough to get smooth,
maneuverable trajectories.

3) Extra Credit - Singularity: A major challenge in sinu-
soidal motion planning is handling singularities that arise when

the robot’s orientation approaches θ = ±90◦, where standard
transformations become ill-defined. These singularities occur
because the forward velocity component u1 is defined in terms
of cos(θ), which approaches zero as θ approaches ±90◦,
making direct control infeasible.

Algorithm 1 Planning Algorithm for Sinusoidal Steering
Require: Initial state (xi, ϕi, αi, yi) and goal state

(xf , ϕf , αf , yf)
Ensure: A plan to steer from the initial state to the goal state

1: if Path does not pass through singularity at θ = ±90◦

then
2: Generate a plan for x, ϕ, α, y using the regular planner.
3: Chain the four plans together and return the complete

plan.
4: else
5: Split the Path: Split into three segments: start →

mid1, mid1 → mid2, mid2 → goal
6: First Segment: Use the regular planner to generate a

sinusoidal plan, since this segment does not have singu-
larity.

7: Second Segment: Use the alternate model to steer
from the first middle state to the second middle state, and
thus through the singularity.

8: Third Segment: Switch back to the regular planner
and steer from mid2 to goal.

9: end if
10: return the complete plan.

To mitigate this issue, our planner includes a singularity
detection mechanism. When a potential singularity is detected,
the trajectory is divided into three segments. The first segment
initiates motion using conventional sinusoidal controls. In the
second segment, where the singularity is expected to occur,
an alternative control formulation is applied. The change in
dynamics of this alternate planner can be summarized as:

α̇ = −1

l
tan(ϕ) · u1, α = cos θ, v1 = sin θ · u1

This planner steers the states to their desired
positions in the order y, ϕ, α, x rather than the
usual order x, ϕ, α, y. As a result, to implement
this alternate planner, we wrote four new functions
steer alternate(y), steer alternate(ϕ), steer alternate(α),
and steer alternate(x). These functions work very similarly
to the normal planner, with small changes made to reflect
the new dynamics. We note that it is equally valid to use the
normal planner to steer x, ϕ, use the alternate planner to steer
α through the singularity and use the normal planner to steer
y again; we chose to fully implement the alternate planner
mostly as a learning exercise. After the model is steered
through the singularity, the normal planner is used once again
to steer the vehicle through the final third of the trajectory.
This temporary inversion ensures smooth passage through the
singular region while maintaining kinematic feasibility. The
complete algorithm is presented in Algorithm 1.

III. EXPERIMENTS

Fig. 2. Generated Paths for Manipulation task (1, 3, 0, 0), with Optimization
Planner on the left, RRT Planner on the right, and Sinusoidal Planner at the
bottom. All three planners completed this task with accuracy in simulation,
especially the Optimization and Sinusoidal planners.

Fig. 3. Generated Paths for Manipulation task (1, 1, π, 0), with Optimization
Planner on the left, RRT Planner on the right, and Sinusoidal Planner at
the bottom. All three planers were able to complete the task when tested in
simulation.

1) Plots & Graphs: Figures 2, 3, and 4 illustrate the trajec-
tory plots for the manipulation tasks. In these visualizations,
the Optimization Planner is presented on the left, the RRT
Planner on the right, and the Sinusoidal Planner at the bottom.
The green line represents the final paths generated by the
planners and executed on the robot, while the yellow lines
for the RRT Planner denotes the RRT tree (composed of
motion primitives) that was constructed to reach the goal. All
planners followed the trajectory with precision in executing the

Fig. 4. Trajectory for Third Manipulation task, with Optimization Planner is
presented on the left, the RRT Planner on the right, and the Sinusoidal Planner
at the bottom. For Optimization Planner and RRT Planner, we chose (2, 3, 0,
0) as the destination, and for Sinusoidal Planner, we used the trajectory (2,
1.3, 0.7, 0)

manipulation tasks. The accuracy of trajectory tracking with
error graphs is discussed in Section IV.

Fig. 5. Trajectory for Navigation Task of Map 1, with the Optimization
Planner on the left and the RRT Planner on the right. At the bottom, we have
comparisons for desired versus actual state values over time, input values over
time, and the robot’s trajectory visualized in the XY plane. The error plots
shown are for our final proportional controller.

Figures 5 and 6 further depict trajectory plots for manipu-
lation tasks, with the Optimization Planner on the left and the
RRT Planner on the right. Additionally, we provide plots for
all four state values (desired versus actual) over time, input
values (commanded versus actual) over time, and the robot’s
path visualized on the XY plane. These are also included

Fig. 6. Trajectory for Navigation Task of Map 2, with the Optimization
Planner on the left and the RRT Planner on the right. At the bottom, we have
comparisons for desired versus actual state values over time, input values over
time, and the robot’s trajectory visualized in the XY plane. The error plots
shown are for our final proportional controller.

in Section VI, along with similar plots for the manipulation
tasks. All these plots were created using the proportional (P)
controller, more details are in Section IV.

2) Real World TurtleBot: In addition to implementing and
testing the three different planners in simulation, we also
deployed all three planners on a real turtlebot, with three con-
trollers: open loop, proportional feedback (P), and a Lyapunov
controller (as described in Paden et. al. [3]). We found that all
three controllers track trajectories with acceptable accuracy;
the path along with the plots for each controller are presented
in Figure 7 (the optimization planner was used for all these
experiments). Further analysis is presented in Section IV.

IV. DISCUSSION

1) Performance & Comparison: Despite encountering
some difficulties while developing and optimizing the plan-
ners, all three finally completed the required tasks. Comparing
performance in terms of generated paths, we believe the
optimization planner is the best since it generates simple yet
smooth trajectories that are easy to track even with an open
loop controller. For instance, the trajectory generated by the
optimization planner for the three point turn (Figure 3) is
exactly a three point turn with smooth motions. In contrast,
the RRT planner, due to its inherent randomness, finds a more
complex path. We found that an open loop controller (as well
as a feedback controller) is worse at tracking RRT paths, which
is to be expected since these are several motion primitives
changed together which are not necessarily easy to track one
after the other. Similarly, the sinusoid planner also comes up
with a more complicated motion since it divides the path into
three segments due to the singularity present in this task.

Fig. 7. Top Left: Path generated by the optimization planner for the real
turtlebot to go from [0,0,0,0] to [1,0,π/3, 0]. Top Right: Plots for desired
versus actual states, inputs and XY trajectory for the open loop controller.
Bottom Left and Right: corresponding plots for the proportional controller
and the Lyapunov controller.

Fig. 8. Top Left: Path generated by the RRT planner for the real turtlebot to
go from [0,0,0,0] to [1,0,π/3, 0]. Top Right: Plots for desired versus actual
states, inputs and XY trajectory for the open loop controller. Bottom Left and
Right: corresponding plots for the proportional controller and the Lyapunov
controller.

The difference in trajectory tracking can be seen in the
bottom plots in Figures 5 and 6. These plots are for a
proportional controller, and it can be seen that for both maps,
the controller is able to accurately track the open-loop path.
However, it struggles with RRT when the generated path
makes sudden changes in direction or speed.

In terms of implementation difficulty, the optimization plan-
ner was the easiest to implement and did not require extensive
tuning. However, RRT was tricky because of the problem of
designing diverse primitives. We spent a lot of time perfecting
our primitives and local planning algorithm, and eventually
settled on an approach that simulates the discrete-time dy-
namics of the car to find the end-position of each primitive,
before using the distance function between these end-positions
and the real goal to choose the best primitive. The sinusoidal
planning was the hardest to understand mathematically, but
relatively easier to implement.

We note that each planner has its own advantages. The
optimization planner’s advantages include ease of implemen-
tation and simple trajectories, while RRT is great at exploring
complicated environments due to its ability to grow a network
of primitives and later chain them together. Sinusoidal paths,
on the other hand, are best suited for navigating an empty
environment in their current version since obstacle avoidance
is not easy to implement for that framework.

2) Open Loop: Running our planners’ generated paths in an
open-loop manner, we found that the simulated vehicle is able
to accurately track the optimization and sinusoidal trajectories.
It also follows the RRT trajectory, but a little less accurately
due to the random nature of the chosen primitives. We also
found that for the three point turn, despite our sinusoidal
generated trajectory not violating any constraints, the simulator
would get stuck (presumably because the car would go near
the x = 0 bound), and so the video we recorded for this
trajectory is done at (2, 2) with the same path.

3) Sinusoidal Planner & Navigation Tasks: The sinusoidal
planner does not work for navigation tasks in its current
form since it does not take into account any obstacles in the
environment. It simply considers state and input bounds, and
outputs a path. To adapt this planner for navigation, one might
consider an RRT-style approach where, if an obstacle blocks
the path generated by the sinusoid planner from the start to
the goal, we split the path into several segments that do not
intersect with obstacles and try to individually complete them
with sinusoids. If these subpaths still collide, we repeat and
break down the segment again, until we get a non-colliding
path.

4) Control Law: We implemented both a proportional (P)
controller and a Lyapunov controller. For the proportional
controller, similar to what we did in project 1, the error in
the inputs at time t is defined as:

e(t) = ud(t)− u(t) (12)

The control input for the robot is adjusted using a propor-
tional feedback approach:

u(t+ 1) = ud(t+ 1) +Kpe(t) (13)

where we have u(t+1) as the feedforward term, which ensures
that the robot follows the nominal desired trajectory. Kpe(t) is
the proportional term. In practice, we set Kp = 0.05 for both
the linear velocity and the steering rate for the real turtlebot,
and Kp = 0.02 for simulation.

For the Lyapunov controller, we follow the design in Paden
et. al [3], which is a natural fit since the real Turtlebot is
also a unicycle model. Specifically, given a target position
(xref , yref , θref , ϕref) and the open loop input (vref , ωref)
for the current timestep, we first find the errors as

xe

ye
θe

 =

 cos(θ) sin(θ) 0
− sin(θ) cos(θ) 0

0 0 1

xref − xr

yref − yr
θref − θ


where xr, yr, θ represents the current state variables. Then,

finding the new input values as

v = vref cos(θe) + k1xe,

ω = ωref + vref (k2ye + k3 sin(θe)) .

creates the Lyapunov control law, with k1, k2, k3 being
tunable parameters. In practice, we set k1 = 0.2, k2 =
0.2, k3 = 0.3.

5) Analysis of Results on Real Turtlebot: We originally
attempted to use a PD controller but found tuning to be ex-
tremely difficult, and then resorted to just using a proportional
controller. Even then, it was difficult to improve on the open
loop controller, with the plots in Figure 7 showing the small
improvement that the feedback controller gives over the open
loop controller. In contrast, the Lyapunov controller works
much better, and was also easier to tune.

We also found that because the turtlebot sways and jerks
while reversing, which we hypothesize occurs because of a
small protusion in its structure near the rear end. As a result,
we found it was difficult for the turtlebot it was difficult to
accurately track the desired rotation with any of the three
tested controllers, as can be seen from the plots: the general
trend θ is tracked, but with a significant offset. The plots also
show that all three controllers struggle to accurately follow
the desired yaw. Testing with the RRT planner instead of
the optimization planner gave similar results; the plots are
presented in Figure 8. We note that tracking results for the
RRT planner are worse, which is to be expected because of the
chained primitives that can require sudden changes in velocity
and direction.

V. BIBLIOGRAPHY

[1] R. M. Murray and S. S. Sastry, “Nonholonomic Motion Planning:
Steering Using Sinusoids,” IEEE Transactions on Automatic Control,
vol. 38, no. 5, pp. 700–716, May 1993.

[2] Lavalle, Steven M.. “Planning Algorithms”. Cambridge University Press,
2006.

[3] Paden, Brian, Michal Čáp, Sze Zheng Yong, Dmitry Yershov, and Emilio
Frazzoli. ”A survey of motion planning and control techniques for self-
driving urban vehicles.” IEEE Transactions on intelligent vehicles 1, no.
1 (2016): 33-55.

VI. APPENDIX

Our video with demonstrations for each planner
can be found here: https://drive.google.com/file/d/
1toTE8Z87vMwxjUtRET8WYT1WLad4j0yz/view?usp=
sharing.

Our github repository can be found here: https://github.
berkeley.edu/yuvan/project2.

Below we have the plots we mentioned in Section III. They
show the desired versus actual states, the commanded versus
actual inputs, and the trajectory visualized in the XY plane for
all manipulation tasks and planners, as well as the navigation
tasks for optimization and RRT planners.

Fig. 9. Optimization Planner Manipulation Task (1, 3, 0, 0) Plot

Fig. 10. Optimization Planner Manipulation Task (1, 1, π, 0) Plot

Fig. 11. Optimization Planner Manipulation Task (2, 3, 0, 0) Plot

Fig. 12. RRT Planner Manipulation Task (1, 3, 0, 0) Plot

Fig. 13. RRT Planner Manipulation Task (1, 1, π, 0) Plot

https://drive.google.com/file/d/1toTE8Z87vMwxjUtRET8WYT1WLad4j0yz/view?usp=sharing
https://drive.google.com/file/d/1toTE8Z87vMwxjUtRET8WYT1WLad4j0yz/view?usp=sharing
https://drive.google.com/file/d/1toTE8Z87vMwxjUtRET8WYT1WLad4j0yz/view?usp=sharing
https://github.berkeley.edu/yuvan/project2
https://github.berkeley.edu/yuvan/project2

Fig. 14. RRT Planner Manipulation Task (2, 3, 0, 0) Plot

Fig. 15. Sinusoidal Planner Manipulation Task (1, 3, 0, 0) Plot

Fig. 16. Sinusoidal Planner Manipulation Task (1, 1, π, 0) Plot

Fig. 17. Sinusoidal Planner Manipulation Task (2, 1.3, 0.7, 0) Plot

Fig. 18. Optimization Planner Navigation Task Map 1

Fig. 19. Optimization Planner Navigation Task Map 2

Fig. 20. RRT Planner Navigation Task Map 1

Fig. 21. RRT Planner Navigation Task Map 2

	Introduction
	Method
	Optimization Planner
	Optimization Planner Implementation
	Trajectory Discretization: Choosing N and t
	Generalize N and t for Arbitrary Goal States

	RRT Planner
	RRT Planner Implementation & Design
	Distance Metric
	Sampling Method

	Sinusoid Planner
	Sinusoid Planner Implementation & Design
	Input Constraints & State Bounds
	Extra Credit - Singularity

	Experiments
	Plots & Graphs
	Real World TurtleBot

	Discussion
	Performance & Comparison
	Open Loop
	Sinusoidal Planner & Navigation Tasks
	Control Law
	Analysis of Results on Real Turtlebot

	Bibliography
	
	Appendix

