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Abstract—State estimation is a fundamental problem in
robotics, enabling robots to estimate their state using control
inputs and sensor measurements. This project explores three
classical estimation techniques: Dead Reckoning, Kalman Filter
(KF), and Extended Kalman Filter (EKF) for robotic localization.
We first implement Dead Reckoning, which relies solely on
the system dynamics to predict the state, as a baseline, which
struggles to track states accurately as error accumulates over
time. To improve accuracy, we implement the Kalman Filter,
which incorporates sensor measurements for correction in linear
systems. For nonlinear systems, we implement the Extended
Kalman Filter, which linearizes the system at each timestep to
apply the Kalman update. By evaluating these methods under
process and measurement noise, we analyze their performance,
accuracy, and robustness.

I. INTRODUCTION

State estimation is a critical component of autonomous
systems, allowing robots to infer their state using control
inputs and sensor measurements. Accurate state estimation
is essential for tasks such as localization, navigation, and
mapping, where precise knowledge of a robot’s position and
orientation is required. In this project, we explore three
fundamental estimation techniques: Dead Reckoning, Kalman
Filter (KF), and Extended Kalman Filter (EKF), each offering
different approaches to estimating system states.

Dead Reckoning estimates the state by integrating the
system’s motion model over time, using only control inputs.
While simple and computationally efficient, it suffers from
cumulative error and drift due to unmodeled disturbances.
The Kalman Filter improves upon this by incorporating sensor
measurements to correct state estimates, assuming a linear
system with Gaussian noise. For more complex systems with
nonlinear dynamics, the Extended Kalman Filter extends the
Kalman Filter by linearizing the system at each timestep.

State estimation plays a crucial role in real-world applica-
tions such as autonomous vehicles, robotic manipulation, and
drone navigation. Self-driving cars rely on state estimation
to track their position accurately, even when GPS signals
are weak. In aerial robotics, drones use onboard sensors
and estimation algorithms to maintain stability and navigate
dynamic environments. By studying these estimation methods,
we gain a deeper understanding of how robots achieve reliable
autonomy in uncertain and noisy conditions.

II. METHOD

A. Dead Reckoning

Dead reckoning is a classical localization method that esti-
mates the system’s state using only its motion model and con-
trol inputs, without incorporating sensor measurements. The
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method originates from solving ordinary differential equations
(ODEs) that describe the system’s continuous-time dynamics.
Given a general system of the form

X = faw),
where = represents the system state, u represents the control
inputs, and f(z,u) describes the system’s evolution over time,
we seek to approximate the state at discrete time steps. The
exact solution requires integration, but since it is often in-
tractable, we employ Euler’s method as a first-order numerical
approximation

zt + 1] = x[t] + f([t], ult]) - At.

This equation, referred to as Equation (12) in the project
document, serves as the foundation for dead reckoning. The
theoretical motivation for this equation comes from the Taylor
series expansion of xz(t), where higher-order terms are ne-
glected

d
o(t+ At) = z(t) + d—f At + O(A).
t
By dropping the higher-order terms, we approximate the
system’s evolution using only first-order information. This
simplification makes dead reckoning computationally efficient
but introduces truncation errors that accumulate over time.

In this project, dead reckoning is applied to a differential-
drive unicycle model, where motion is controlled by two

independently driven wheels. The system state is defined as
T

T = [(p x y 0 0 R]

)

where ¢ is the robot’s orientation, = and y represent its
position in the 2D plane, and ;,0r are the rolling angles
of the left and right wheels. The control input consists of the
wheel angular velocities,
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Using the project document’s provided motion model, the

continuous-time system dynamics are given by
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Applying Euler’s method to discretize the equations, we
obtain the update rules for each state variable:
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olt +1] = o[t] + (—ﬁuL T ﬁuR) At,

x[t+ 1] = z[t] + (g cos p[t](ur, + uR)> At,
ylt + 1] = y[t] + (g sin ¢[t](ur +uR)) At,
Or[t + 1] = 0L[t] + up At,

GR[t + 1] = HR[t] + URAt.

These equations describe how the system state evolves
based on the latest control inputs. The dead reckoning method
operates iteratively, updating the state at each timestep by
propagating the previous state forward using the current
control input. A similar model is developed for the planar
quadrotor.

Despite its simplicity, dead reckoning suffers from cumu-
lative error accumulation due to numerical integration errors
and unmodeled disturbances. Small inaccuracies in the control
inputs or initial conditions can lead to significant drift over
time, limiting the method’s long-term reliability. This limita-
tion motivates the use of the principle of feedback, which leads
to the Kalman Filter.

B. Kalman Filter

The Kalman filter provides a method to estimate the state of
a system while incorporating sensor measurements to correct
for errors. Unlike dead reckoning, which solely relies on
integrating the system dynamics forward in time, the Kalman
filter updates state estimates using both the motion model and
measurement model. This makes it particularly effective for
reducing drift and uncertainty in state estimation.

The fundamental assumptions in Kalman filtering are that
1) the system dynamics are linear and 2) that both the process
noise and measurement noise are normally distributed with
zero mean and covariance matrices () and R, respectively.
The system dynamics in our implementation for the unicycle
model thus assume a fixed bearing at ¢ = 7/4, leading to a
linearized state transition model. The state evolves according
to:

z[t + 1] = Az[t] + Bult] + wt],

where w[t] ~ N(0,Q) represents process noise. The mea-
surement model follows:

ylt] = Cxft] + v[t],

where v[t] ~ N (0, R) represents measurement noise. Given
these models, the Kalman filter follows a predict-update cycle:

1. State Extrapolation:
xt+1|t = Axt + But.
2. Covariance Extrapolation:
P =APAT + Q.
3. Kalman Gain Calculation:
Kt+1 = Pt+1‘tCT(CPt+1‘tCT + R)_l.
4. State Update:

Top1 = Typape + K1 (ye — Czpgapy)-

5. Covariance Update:

Piy1 = = Kiy1O) Py

In our implementation, the matrices are defined as:
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The matrix A assumes a linear time-invariant model, mean-
ing the state evolves without internal changes aside from
control inputs. The control matrix B maps wheel velocities
to position updates, while the measurement matrix C' extracts
the observed positions (z,y).

The covariance matrices (), R, and the initial state uncer-
tainty Py play a crucial role in Kalman filtering. The process
noise covariance () models uncertainty in system dynamics
due to unmodeled effects like wheel slippage. A higher @
value assumes that motion model predictions are less reliable,
increasing reliance on sensor updates. The measurement noise
covariance R reflects sensor accuracy—low values indicate
highly precise measurements, while higher values account for
noisy sensors. Finally, P, represents our initial confidence in
the state estimate; large values indicate high initial uncertainty.

The parameters were fine-tuned through empirical testing
by evaluating estimation accuracy and convergence behavior.
We started with diagonal ) and R matrices with small values
and gradually increased them to balance trust in dynamics vs.
sensor data. In simulation, we leveraged ground truth data to
iteratively adjust these values for optimal tracking. Our final
fine-tuned Py, (), R matrices were all the identity.

If implementing on a real robot without access to ground
truth, an alternative approach would be to estimate () and
R using sensor characterization experiments. For example,
running the robot in a controlled environment and analyzing
deviations between expected and observed state transitions
would allow empirical estimation of process noise. Similarly,



repeated sensor readings of a fixed landmark would help
estimate measurement noise.

In summary, the Kalman filter significantly improves state
estimation over dead reckoning by dynamically weighting the
reliability of sensor data against motion model predictions. The
fine-tuning of @, R, and F, is critical to achieving accurate
and stable estimation.

C. Extended Kalman Filter

The Extended Kalman Filter (EKF) is a nonlinear extension
of the Kalman Filter. In contrast to the standard Kalman Filter,
which assumes linear system evolution, the EKF approximates
the nonlinear dynamics through local linearization. This is
achieved by computing the first-order Taylor expansion of
the system’s state transition function and measurement model
around the current state estimate at each timestep.

In this project, the system under consideration is a planar
quadrotor, where the state evolves according to nonlinear
dynamics. The full state vector consists of the quadrotor’s
position, velocity, and orientation, given by
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The control inputs are the thrust force and torque applied
to the quadrotor, represented as

Uy
U= R
U2

where w is the total thrust and wus is the net torque.
The quadrotor’s motion is governed by Newton’s second law,
leading to the nonlinear equations
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Using forward Euler discretization, we obtain the discrete-
time state update

xft + 1] = x[t] + f(x[t], ult]) - At.

However, due to the presence of trigonometric functions in
the state update, this function is nonlinear. The challenge in
applying the Kalman Filter is that the standard formulation
assumes a linear system of the form

z[t + 1] = Az[t] + Bult] + w[t],

where A and B are constant matrices, and wlt] is process
noise. Since our system is nonlinear, we cannot directly apply
this formulation.

To address this problem, we approximate the nonlinear state
transition function by computing its Jacobian matrix, denoted
as A(z,w), which represents the first-order partial derivatives
of f(x,u) with respect to the state variables. The relevant
nonzero elements in A are:

U1 uy .
A13,A24,A35 =1,A32 = o, o8 Ay = — o, Sine.

Similarly, the measurement model is nonlinear because the
quadrotor estimates its position using distance measurements
to a fixed landmark at (0,5,5). The measurement equations
are:

y1 =22 +52 + (2 — 5)2,

Since y; is a nonlinear function of z and z, we linearize it
by computing the Jacobian matrix C'(z), which has nonzero
entries:
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With these approximations, EKF follows the predict-update
steps:
1) Predict the next state using the nonlinear system dynam-
ics.
2) Linearize the system by computing A(z, ) and C(x) at
the current state estimate.
3) Propagate the covariance matrix:

Py = APAT + Q.

4) Compute the Kalman Gain:

Kt = Pt+1|tCT(CPt+1|tCT + R)_l.

5) Update the state estimate using the measurement:

Tep1 = T + Ke(ye — h(@eg11t))-

6) Update the covariance matrix:

Pri1 = (I = KC) Py

The technique used to handle nonlinearity is first-order
linearization through Jacobian matrices. This approach allows
us to locally approximate the nonlinear dynamics, making it
possible to apply Kalman filtering. However, this method has
limitations. Since the system is only approximated locally,
significant errors can arise if the state drifts too far from the
linearization point. Additionally, the Gaussian noise assump-
tion in Kalman filtering does not hold perfectly when nonlinear
transformations are applied, potentially leading to suboptimal
state estimates.

To mitigate these issues, more advanced filtering techniques
such as the Unscented Kalman Filter (UKF) or Particle Filters
can be used. The UKF propagates a set of carefully chosen
sample points through the nonlinear function to better capture
higher-order effects, while Particle Filters use a probabilistic
approach that does not require linearization. However, these
methods are computationally more expensive. Despite its
limitations, EKF remains a widely used technique due to its
balance between efficiency and improved accuracy compared



to dead reckoning. By incorporating sensor measurements, it
significantly reduces drift and improves the robustness of state
estimation in nonlinear systems.

III. EXPERIMENTS

A. Performance Table

For better visibility, we put the performance table in the
appendix. Here we provide the combined plot, which includes
plots of the estimates & compared with the ground truth = and
plot of the estimated trajectory compare with the ground truth
trajectory.

B. Dead Reckoning

Dead Reckoning

Fig. 1. Performance of Dead Reckoning for the TurtleBot

The performance of the Dead Reckoning estimator for the
TurtleBot exhibits significant drift over time, which is evident
from the trajectory plot comparing the true and estimated
positions. The estimated trajectory (in cyan) deviates from the
ground truth (in green), particularly in the xy-plane, where the
estimated trajectory forms a larger, misplaced spiral relative
to the actual path. This error is a direct consequence of
unbounded error accumulation inherent in Dead Reckoning, as
it relies purely on integrating velocity inputs without any cor-
rection mechanism. The bearing (¢) estimation demonstrates
a generally increasing trend, matching the expected behavior;
however, discrepancies appear as time progresses, contributing
to positional errors. The individual z and y displacement
plots further reinforce this observation, showing deviations
between estimated and true values, especially over longer
time horizons. Despite these errors, Dead Reckoning has the
advantage of being computationally efficient, as shown in
the computation time plot, where per-step calculations remain
in the order of 1075 seconds (see Table [l in Appendix),
making it suitable for real-time applications with limited
processing resources. The primary limitation is that even minor
inaccuracies in velocity inputs or time integration accumulate
rapidly, leading to increasing errors over time. This issue is
particularly evident in the TurtleBot’s motion, where discrep-
ancies between estimated and actual positions grow as the
robot continues its trajectory. While Dead Reckoning may be
sufficient for short-term estimation, its long-term accuracy is
inadequate without external corrections, such as sensor fusion
with GPS or landmark-based localization.

Dead Reckoning

Fig. 2. Performance of Dead Reckoning for the Drone

The performance of the Dead Reckoning estimator for the
drone exhibits a noticeable divergence from the true trajectory,
as seen in the xz-plane plot, where the estimated trajectory
(cyan) veers significantly away from the ground truth (green).
This deviation is particularly pronounced over time, demon-
strating the inherent limitation of Dead Reckoning—error
accumulation due to the absence of corrective feedback. The
bearing (¢) estimation initially follows the true value but be-
gins to diverge as time progresses, introducing rotational errors
that compound positional inaccuracies. The individual x and 2
displacement plots further illustrate this growing discrepancy,
with the estimated trajectory systematically drifting away from
the actual path, especially in the later stages. Despite these
limitations, the computation time remains extremely low, on
the order of 106 seconds per step, making Dead Reckoning
an attractive choice for real-time applications where computa-
tional efficiency is critical. However, the observed error growth
suggests that Dead Reckoning alone is unsuitable for long-
term state estimation, particularly for aerial robots where small
deviations in position can lead to large cumulative errors due
to dynamic instability.

C. Kalman Filter
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Fig. 3. Performance of the Kalman Filter for TurtleBot

The Kalman Filter estimator for the TurtleBot demonstrates
high accuracy and stability in state estimation, as seen from the
trajectory and individual state plots. The zy-plane trajectory
plot shows that the estimated path (cyan) closely follows



the ground truth (green), indicating that the Kalman Filter
effectively corrects errors from process noise and sensor
inaccuracies. Unlike the Dead Reckoning approach, which
accumulates drift over time, the Kalman Filter leverages sensor
measurements to update its estimates, resulting in a trajectory
that remains well-aligned with the true path. The individual
state plots further reinforce the estimator’s performance. The
¢ (heading) plot remains stable throughout the execution,
suggesting that the filter maintains an accurate estimate of
the robot’s orientation. The x and y position plots exhibit a
nearly perfect overlap between the estimated and true values,
which highlights the filter’s ability to track position reliably.
Additionally, the wheel angle (6, and 6g) plots indicate that
the model properly incorporates wheel odometry, keeping the
estimated values tightly aligned with the actual readings.

One of the key differences between the performance of the
Kalman Filter compared to Dead Reckoning is its computa-
tional efficiency. The computation time plot shows that each
update step executes in the range of approximately 1.9 x 10~4
seconds, which is around 7 times slower than Dead Reckoning.
This suggests that the filter is relatively computationally heavy,
which makes real-time implementation on embedded systems
a balancing act between accuracy and speed. Overall, the ob-
served performance indicates that the Kalman Filter is highly
effective at reducing the error present in Dead Reckoning
while maintaining a slightly higher computational overhead.
However, its reliance on a linear system model means that it
may struggle in scenarios with strong nonlinearities, where
the Extended Kalman Filter or other nonlinear estimation
techniques may be necessary.

D. Extended Kalman Filter
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Fig. 4. Performance of Extended Kalman Filter for Drone

The Extended Kalman Filter (EKF) estimator for the drone
exhibits a high degree of accuracy in state estimation, as evi-
denced by the trajectory and state plots. The x-z trajectory plot
illustrates that the estimated path (cyan) closely aligns with the
ground truth (green), suggesting that the EKF effectively miti-
gates drift and sensor noise by incorporating nonlinear process
and measurement models. Unlike standard Kalman Filters,
which assume linear system dynamics, the EKF linearizes
the motion model at each timestep using Jacobian matrices,
allowing it to handle the nonlinear dynamics of drone motion.

This is reflected in the ¢ (orientation) plot, where the estimated
values track the true values with minimal deviation, indicating
that the filter correctly estimates the drone’s angular position
over time.

The x and z position plots further demonstrate the EKF’s
precision, as the estimated trajectory maintains close align-
ment with the true trajectory, even in dynamic motion. The
small deviations observed suggest that measurement noise
and model uncertainties are effectively handled, though minor
discrepancies indicate that further tuning of the process noise
covariance matrix (()) or measurement noise covariance matrix
(R) could further refine accuracy. The computation time plot
reveals that the EKF maintains a consistent update time on
the order of 4 x 102 seconds, which is around 20 times
slower than Dead Reckoning. However, this speed is still
reasonable to remain within real-time execution constraints.
This increase in computational cost is expected due to the
Jacobian computations required for state updates. Overall, the
EKF demonstrates robust performance in tracking the drone’s
state while effectively accounting for system nonlinearities,
making it well-suited for applications where motion dynamics
deviate from strict linearity.

IV. DISCUSSION

The performance of the three estimators varies significantly
due to their fundamental assumptions and ability to han-
dle uncertainty. Dead Reckoning relies solely on integrating
control inputs over time, making it highly susceptible to
cumulative errors due to unmodeled disturbances and sensor
noise. This is evident in the Dead Reckoning plots, where
the estimated trajectory drifts significantly from the ground
truth as time progresses. For both the drone and TurtleBot
implementations, the position estimates deviate over time,
illustrating the limitations of open-loop estimation in real-
world applications. The method is computationally efficient,
but the lack of correction from external measurements causes
long-term inaccuracies.

In contrast, the Kalman Filter introduces a probabilistic
framework that combines noisy sensor measurements with a
prediction model to refine state estimates. The performance
plots for the Kalman Filter show a significant improvement
over Dead Reckoning, with the estimated trajectory closely
following the ground truth. This improvement is achieved by
incorporating observation updates, which correct the predicted
state based on sensor feedback. However, the Kalman Filter
assumes linear system dynamics, which may not always hold
in real-world scenarios. The estimation accuracy remains high
in structured environments where the system dynamics can be
well approximated by linear models.

The Extended Kalman Filter (EKF) further extends the
Kalman Filter framework to handle nonlinear system dynamics
by linearizing the model at each time step. This approach
allows the EKF to handle more complex motion models, as
seen in the drone experiment where the trajectory estimation
remains close to the ground truth despite nonlinear dynamics.
The plots indicate that the EKF effectively mitigates drift



and maintains higher accuracy compared to Dead Reckon-
ing. However, the need for frequent Jacobian computations
increases its computational cost, which is evident from the
per-step computation time measurements. Additionally, EKF’s
reliance on local linearization can lead to errors when the
system exhibits highly nonlinear behavior that cannot be well
approximated by a first-order Taylor expansion.

Comparing the three estimators, Dead Reckoning is the
simplest and fastest but accumulates significant error over
time. The Kalman Filter balances computational efficiency
with robustness in structured environments but struggles with
strong nonlinearity. The Extended Kalman Filter offers the
best accuracy for nonlinear systems but at the cost of increased
computation time. In real-world applications, Dead Reckoning
might be used in scenarios where computational resources are
extremely limited, and short-term state estimation is sufficient.
The Kalman Filter is well suited for structured environments
with reliable sensor measurements, such as mobile robots op-
erating in a mapped indoor space. The EKF is ideal for aerial
vehicles or autonomous systems operating in highly dynamic
environments, where linear assumptions fail. A quantitative
comparison of the three estimators is also provided in Table[]
where we present the average error in the predictions for every
state variable, as well as the average computation time per step.

To improve these estimators, one possible approach is to
introduce adaptive filtering techniques that dynamically adjust
process and measurement noise covariance matrices based
on real-time observations. Additionally, incorporating sensor
fusion, such as combining IMU data with GPS or LiDAR,
could further enhance robustness. More advanced approaches
like the Unscented Kalman Filter (UKF) or particle filters
could also be explored to handle strong nonlinearities more
effectively.

Overall, while each estimator has its advantages and draw-
backs, the choice depends on the specific application require-
ments in terms of accuracy, computational efficiency, and
robustness against noise and nonlinearity.
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VI. APPENDIX

Our github repository can be found here: https://github.com/
ucb-ee106-classrooms/project-3-yuvan.
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Algorithm

Summary of Performance

Estimation Accuracy (Deviation from Ground

Per-Step Computational

Truth) Time (s)
Dead Reckoning (TurtleBot) Relies solely on motion integra- | [0.45,0.25,0.20,0.044,0.027] 2.7 x 107°
tion, accumulates significant drift
over time. Poor performance with-
out sensor correction.
Kalman Filter (Turtlebot) Uses sensor fusion to correct drift | [2.16 x 1075,2.79 x 10-2,2.85 x 1072,3.55 x | 1.9 x 10~ %
from motion integration, signifi- | 1072,2.55 x 1071]
cantly improving accuracy.
Dead Reckoning (Drone) Relies solely on motion integra- | [3.10,0.66,0.11,2.38,0.82,0.048] 1.9 x 1076
tion, accumulates significant drift
over time. Poor performance with-
out sensor correction.
Extended Kalman Filter (Drone) | Handles nonlinearities better, im- | [0.11,0.15,0.016,0.05,0.05,0.05] 4x107°

proving accuracy over standard KF.

TABLE T
COMPARISON OF DIFFERENT STATE ESTIMATION ALGORITHMS. THE KALMAN FILTER OUTPERFORMS DEAD RECKONING FOR THE TURTLEBOT,
ACHIEVING MUCH LOWER ERRORS AT THE COST OF HIGHER COMPUTATION TIME. SIMILARLY, THE EXTENDED KALMAN FILTER OUTPERFORMS DEAD

RECKONING FOR THE QUADROTOR DRONE, ALBEIT WITH A SLOWER RUNNING TIME.
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