
Grasping
Ziteng (Ender) Ji Yuvan Sharma

Abstract—In this project, we implemented a multifingered
grasping pipeline using an Allegro hand mounted on a Sawyer
robot in MuJoCo. We developed a Levenberg–Marquardt inverse
kinematics (IK) solver to control all four fingers simultaneously
and used a grasp synthesis algorithm based on Q+ and Q−
metrics to achieve force closure grasps. The grasping process
involved detecting contact, optimizing wrench closure, and lifting
the object. For our extension, we demonstrated the ability to
pick up a spherical object and place it into a container, and
grasping a cube. This project includes dexterous manipulation,
integrating theoretical concepts such as grasp matrices, friction
cone discretization, and force closure with practical simulation-
based control.

I. INTRODUCTION

Grasping remains a fundamental challenge in robotics due
to the complexity of perception, contact dynamics, and multi-
joint coordination. This project explores multifingered grasp-
ing with an Allegro hand mounted on a Sawyer arm using the
MuJoCo physics engine. The goal is to simulate dexterous
manipulation by combining classical grasping theory with
practical algorithmic implementations.

We begin by developing an inverse kinematics (IK) solver
using the Levenberg-Marquardt method to control all four
fingers of the hand simultaneously. We then implement a grasp
synthesis pipeline based on force closure analysis, evaluating
grasps using Q+ and Q− metrics to guide contact optimization
and ensure object stability. As an extension, we demonstrate
a complete pick-and-place pipeline in which the robot grasps
a spherical object and places it into a container.

Finally, we provide experimental results that evaluate each
component of our system, including IK performance, grasp
stability, and extension results.

II. METHOD

A. IK Solver

In this project, we implemented a multifingered inverse
kinematics (IK) solver using the Levenberg–Marquardt (LM)
method, a standard numerical optimization technique for solv-
ing nonlinear least squares problems. The goal of inverse
kinematics is to compute a joint configuration qh ∈ R16

for the Allegro hand such that the end-effector poses—that
is, the positions and orientations of the palm and each fin-
gertip—match given target poses in 3D space. Because the
Allegro hand contains many joints and multiple independent
end-effectors (the palm and four fingers), we require an
optimization-based solver capable of handling this complexity.
The LM update equation is

qt+1 = qt +
(
J⊤J + λI

)−1
J⊤(xd − xt)

where qt is the joint configuration at iteration t, xd is
the desired task-space pose (position and orientation), xt is
the current pose computed via forward kinematics, J is the
Jacobian matrix of the hand with respect to the joints, λ is
a damping coefficient to handle singularities, and I is the
identity matrix.

To adapt this formulation for multiple fingers, we concate-
nate both the Jacobians and the error vectors for all five bodies
(the palm and four fingertips). For each body i, we compute
a 6-dimensional error vector consisting of 3 positional and 3
rotational components. The rotational error is derived from
the difference between the desired and current orientation
quaternions using quaternion multiplication. Specifically, we
compute the relative quaternion qerr = qd · q−1

c and extract
its vector part to approximate the orientation error. These per-
body errors are stacked to form a global task-space error vector
e ∈ R30 across all 5 bodies.

Similarly, for each body, we compute a Jacobian matrix
Ji ∈ R6×16, composed of linear and angular components
(from MuJoCo’s mj_jacBody function). These are vertically
stacked to form a global Jacobian J ∈ R30×16. Once we have
the global error vector and global Jacobian, we apply the LM
update formula to compute a joint update ∆q, which is then
added to the current joint configuration. After each update, we
clip the joint values to be within valid ranges using MuJoCo’s
joint limits. This procedure is repeated iteratively until the
error ∥xd − xt∥ falls below a small threshold, indicating
convergence to a solution.

This strategy allows us to simultaneously control multiple
end-effectors by treating their constraints as part of a sin-
gle optimization problem. Rather than solving IK for each
fingertip independently—which would lead to inconsistencies
and infeasibility due to joint coupling—we construct a unified
error vector and Jacobian that considers all fingertip and palm
constraints together. This results in smooth and coordinated
joint motions across the whole hand. The algorithm terminates
when the overall task-space error is sufficiently small or a
maximum number of iterations is reached, ensuring stability
and efficiency in simulation.

B. Grasping Algorithm

To synthesize a robust, force-closure grasp, we imple-
mented the grasping pipeline described in Section 1.5 of the
project document. The core idea is to iteratively optimize
the Allegro hand’s joint configuration so that the resulting
contact wrenches enclose the origin in wrench space, thereby
satisfying the conditions for force closure. This is achieved



through a two-stage optimization procedure that evaluates both
a necessary and a sufficient condition.

The algorithm begins by bringing the hand near the ob-
ject using a predefined palm pose. From there, the fingers
iteratively descend and attempt to make contact. Contact is
evaluated by computing the Euclidean distance from each
fingertip to the surface of the object; contact is considered
established once all distances fall below a small threshold.
While contact has not been made, the optimization objective
is solely based on the squared distance from fingertips to the
surface of the object:

D =

4∑
i=1

d2i

where di is the Euclidean distance from fingertip i to the
closest point on the object surface. This term encourages the
hand to converge toward the object.

Once contact is established, the algorithm builds a grasp
matrix G ∈ R6×kn by discretizing the friction cone at each
contact point. The friction cone is approximated using k evenly
spaced vectors dji within the cone aperture, as described in
Section 1.3.1 of the document. Each contact point ci generates
k wrenches wj

i ∈ R6, defined as:

wj
i =

[
dji

(ci − o)× dji

]
Here, ci is the contact position in world coordinates, and o

is the object center. The full grasp matrix G is constructed by
horizontally stacking these wj

i across all contact points.
The first optimization step evaluates a necessary condition

for force closure by computing the Q+ score. The goal is
to minimize the distance from the origin of wrench space
to the set of allowable wrenches generated by nonnegative
combinations of G, while also considering the fingertip-object
distance:

d2Q+(0,W ) = min
α≥0

∥Gα∥22 + βD

This is implemented using a quadratic program in
optimize_fc_loss_qp() where α ∈ Rkn is constrained
to be nonnegative, and β is a hyperparameter balancing grasp
quality and proximity. The Q+ score serves as a continuous
surrogate for testing whether 0 ∈ co(W ), which is necessary
but not sufficient for force closure.

If the Q+ score falls below a small threshold (we found
10−6 to work best in our setting), we proceed to evaluate
the sufficient condition using Q−, which tests whether the
origin lies in the interior of the convex hull of the grasp
wrenches. This condition is satisfied if the largest ball around
the origin is entirely contained within the feasible wrench set.
Mathematically, this is expressed as:

dQ−(k) = min−r s.t. rqk =

N∑
i=1

αigi

∑
αi = 1, αi ≥ 0, r ≥ 0

where qk ∈ R6 is a sampled unit vector in wrench space
and gi is a column of G. We solve this linear program across
multiple directions qk and define:

dQ−(G) = max
k

dQ−(k)

If dQ−(G) < 0, then the grasp achieves full force closure.
The entire optimization is performed in joint space using
gradient descent. The objective function is defined piecewise
based on whether contact has been made:

f(qh) =


βD if no contact
d2Q+(0,W ) + βD if Q+ > threshold
dQ−(G) + βD if Q+ ≤ threshold

To minimize this objective, the joint configuration is updated
iteratively:

qnew
h = qh − λ∇qhf(qh)

The gradient ∇qhf(qh) is computed using finite differences,
as implemented in the function numeric_gradient().
Each iteration applies the updated joint angles to the MuJoCo
simulation, reconstructs the scene, re-evaluates contact, and
recomputes the objective.

The algorithm terminates either when the maximum number
of iterations is reached or when the grasp achieves the desired
force closure condition.

C. Extensions

1) Grasp Cube: To extend our grasp synthesis pipeline be-
yond spherical objects, we adapted our simulation environment
to support grasping a cube. This required no modification to
the grasping algorithm itself, which is designed to be shape-
agnostic and generalizes to arbitrary object geometries. The
extension primarily involved updating the scene configuration
and reusing the same inverse kinematics and grasp synthesis
logic described earlier.

We initialized the environment using
AllegroHandEnv(object_type="cube"), which
triggered the placement of a cube into the simulation.
Internally, the environment constructs the cube using
a MuJoCo primitive with box geometry of dimensions
0.04 × 0.04 × 0.04 m. The cube was positioned near the
origin to match the palm’s default pregrasp pose.

The grasp synthesis pipeline began with the Allegro hand
positioned in a flat configuration above the object. Using
the environment’s utility functions, we computed fingertip-
to-surface distances and projected contact normals at each
fingertip. Unlike a sphere, where contact normals always point
radially outward, the cube introduces discontinuities at edges
and vertices. The surface normal at each contact point ci was
computed based on the face geometry of the cube and used to
construct the discrete friction cone.



For each contact point i, we discretized the friction cone into
k vectors {dji}kj=1 and generated corresponding wrenches:

wj
i =

[
dji

(ci − o)× dji

]
where o denotes the cube’s center of mass. These wrenches

were aggregated into a grasp matrix G ∈ R6×kn, which was
used to evaluate force closure via the Q+ and Q− metrics, as
in the original sphere case.

The loss function remained:

f(qh) =


βD if contact not made
minα≥0 ∥Gα∥2 + βD if contact made (Q+)
maxk dQ−(k) + βD if Q+ below threshold (Q−)

where D =
∑4

i=1 ∥ci − surfacei∥2 is the sum of squared
fingertip-to-surface distances, and β is a tunable weight.

Because the optimization loop and wrench computation are
generic, the grasp synthesis algorithm required no modifica-
tion. It operated identically to the sphere case, updating the
joint configuration of the hand via:

qnew
h = qh − λ∇qhf(qh)

where gradients were computed using finite differences. Af-
ter convergence, the resulting grasp configuration was executed
in simulation using interpolation. The success of the grasp
was visually and quantitatively evaluated based on whether the
cube was securely lifted without slipping or tipping, despite
its flat surfaces and sharp edges.

Fig. 1. Grasping cube task in Mujoco

2) Extra Credit: Pick & Place into Container: We also
completed another extension task, where the robot picks up
the ball, and places it onto a container. The grasp was again
found using grasp synthesis as in Task 2, and the robot was
then further controlled to move above the container and open
the fingers to gently place the ball. The images depicting this
task can be found in Figures 20- 23.

III. RESULTS

1) IK Solver Result: In the figure below we show the result
of solving IK on the values provided in task 1.

Fig. 2. Result of solving IK on the values provided in task 1

We also generated four equidistant grasp points on the
equator of the sphere and used IK to set the fingers to those
grasp points.

Fig. 3. Four grasp points

This method successfully positioned the fingers to achieve
contact, as shown in the image provided. The grasp config-
uration resulted in a theoretically stable hold on the object,
demonstrating that the IK solver is capable of reaching target
poses derived from simple geometric reasoning. However, the
collisions seen in the image are likely a result of a quirk with
the simulator, which leads to uncertainty in whether the grasp
is actually stable. While this approach did partially in our
case, it is not inherently robust across different object shapes
or orientations. It assumes uniform curvature and known
geometry, which may not generalize well to objects with
complex surfaces or occlusions. Nonetheless, for symmetric
objects like a sphere, this method provides a straightforward
and effective way to generate initial grasp poses.



2) Grasp Planner Loss Curve: Here we provide the loss
curve for the objective over time for grasp planner.

Fig. 4. Loss vs. Iteration Count for the Grasp Planner. The loss here is shown
for starting height of 0.14 m.

3) Stages of Grasping: We show four stages of grasping
for the ball: before the grasp (Figure 5), after fingers made
contact (Figure 6), after adjusting for force closure (Figure 7),
and final stage after lifting up the object (Figure 8).

Fig. 5. Before the grasp

4) Q+, Q− Distance Table: The metrics for different
grasping heights are presented in Table I. It was observed both
from the quantitative results and the qualitative evaluation of
different grasps that a larger Q+ distance corresponds to a
more stable grasp, and a smaller (more negative) Q- distance
similarly corresponds to a more stable grasp. This can also be
seen from the results for the starting height 0.19 m: the Q-
distance is very close to 0, the Q+ distance is small, and the
grasp did not succeed.

5) Grasping Plots: For the grasping plots, we present the
Contact Force vs. Time and Number of Contacts vs. Time
graphs for two initial palm heights: 0.14 m and 0.19 m. The

Fig. 6. After fingers made contact

Fig. 7. After adjusting for force closure

contact force graphs are presented in Figure 9 and Figure 10,
and the number of contacts graphs are presented in Figure 11
and Figure 12.

6) Extension: For our extension tasks, we recorded the
Contact Force vs. Time and Number of Contacts vs. Time
graphs. For the container task, these results are presented in
Figure 13 and Figure 14 in Appendix. For the cube task,
these results are presented in Figure 15 and Figure 16 in the
Appendix. We also provide images for the different stages of
these extension tasks in the Appendix.

IV. DISCUSSION

Overall, we found that the Levenberg–Marquardt inverse
kinematics solver works well. It was observed both while
completing the given tasks and general testing that the solver
is able to reach target configurations to a good approximation,
given enough iterations. However, we found that trying to use
inverse kinematics to grasp the ball was not a good strategy.
This was because IK is focused more on trying to reach a
target configuration and gives no importance to the stability
of a grasp. As a result, unless one somehow has the exact



Fig. 8. Final stage

Start Height Q+ Distance Q- Distance Obj. Value Success
0.09 8.70× 10−6 −1.7× 10−2 2.9× 10−3

0.12 9.04× 10−6 −7× 10−3 8.87× 10−5

0.13 8.80× 10−6 −1× 10−2 7.14× 10−5

0.14 9.83× 10−6 −1.1× 10−2 1× 10−4

0.17 8.58× 10−6 −4× 10−3 1.6× 10−4

0.19 3.97× 10−6 −3× 10−4 2.6× 10−3

TABLE I
COMPARISON OF Q+, Q- AND OBJECTIVE VALUE METRICS FOR

DIFFERENT PRE-GRASP HEIGHTS. ALL HEIGHTS ARE GIVEN IN METERS.

target configuration that gives a stable grasp, IK is ineffective
since it is difficult to accurately create a stable grasp to give
as input. In addition, we found that using IK did not always
result in collisions being respected, although this is more of
an issue with the MuJoCo simulator than the approach itself.

On the other hand, the grasp synthesis algorithm worked
well, generating a stable grasp that we were able to complete
a pick and place task with. In addition, the algorithm’s per-
formance was robust to changes in height (as seen in Table I),
and also transferred over to a different shape in the form of
a cube. The main issue we encountered with grasp synthesis
was that while trying to execute the grasp with a control loop,
the Allegro hand would jerk downwards during the first step
of the control loop. Upon debugging this issue, we found that
this is because the joint angles of the Sawyer robot change
suddenly during the first timestep, likely due to some sort of
initialization process in the simulator. To fix this issue, we
started the hand at a slightly higher height than what was
used during grasp synthesis to compensate for the downward
movement. This movement also explains the sudden spikes
in all the contact forces graphs presented, as every time we
switched from one motion to another, the jerk would occur.

One of the major challenges we encountered during this
project arose while implementing the extension task of picking
up a ball and placing it into a container. While our grasp
synthesis algorithm was able to reliably generate stable grasps
around the ball, issues emerged when transitioning to the
placement phase. Specifically, after successfully lifting the
object, the hand would abruptly “teleport” to the target lo-

Fig. 9. 0.14 m: Contact Force vs. Time

Fig. 10. 0.19 m: Contact Force vs. Time

cation above the container rather than moving there through a
smooth, interpolated trajectory. This was initially puzzling, as
it appeared that our control loop was not executing as intended.

Upon deeper inspection, we discovered that the issue
stemmed from how the inverse kinematics (IK) results were
being applied. The problem was that when we called the IK
solver to determine the final placement pose, it immediately
updated the environment’s simulation state to the solution
pose. As a result, the control loop intended to animate the
transition from the grasp to the target was effectively skipped,
because the object was already at its goal before the motion
sequence began. Our solution was to first compute all IK
results offline, store them as target poses, and then reset the
simulation to its pre-motion state. From there, we executed
a single, continuous control loop that incrementally interpo-
lated the joint positions to the desired targets. This approach
preserved simulation continuity and ensured the arm moved
naturally during the placement phase.



Fig. 11. 0.14 m: Number of Contacts vs. Time

Fig. 12. 0.19 m: Number of Contacts vs. Time

Looking ahead, this project opens several directions for
future work. One natural extension is to explore model-less
grasping algorithms, which do not rely on known object
geometries but instead use real-time sensor data, such as vision
or tactile feedback, to infer object shape and plan grasps. This
would make the grasping pipeline more robust to unstructured
or dynamic environments. Another direction is the integration
of learning-based methods, such as reinforcement learning
or generative models, to learn grasp strategies directly from
experience or data. These methods could generalize across
object categories and adapt to new scenarios. Additionally,
incorporating dual-arm grasping [1] or soft contact modeling
could enable more complex and compliant manipulation tasks.
Together, these directions would build on the core techniques
implemented in this project and further bridge the gap between
theory and real-world robotic dexterity.

V. BIBLIOGRAPHY

[1] Shaw, Kenneth, et al. ”Bimanual dexterity for complex tasks.” arXiv
preprint arXiv:2411.13677 (2024).

VI. APPENDIX

Our videos for different tasks can be
found here: https://drive.google.com/drive/folders/
1JXBwePOtgJWTf3OBbdBdIhhEl5cO7etv?usp=sharing.

Our github repository can be found here: https://github.
berkeley.edu/yuvan/project4.

Fig. 13. Container Task: Contact Force vs. Time

Fig. 14. Container Task: Number of Contacts vs. Time

https://drive.google.com/drive/folders/1JXBwePOtgJWTf3OBbdBdIhhEl5cO7etv?usp=sharing
https://drive.google.com/drive/folders/1JXBwePOtgJWTf3OBbdBdIhhEl5cO7etv?usp=sharing
https://github.berkeley.edu/yuvan/project4
https://github.berkeley.edu/yuvan/project4


Fig. 15. Cube Task: Contact Force vs. Time

Fig. 16. Cube Task: Number of Contacts vs. Time

Fig. 17. Cube: before the grasp

Fig. 18. Cube: after fingers made contact

Fig. 19. Cube: lifting up

Fig. 20. Container task: before the grasp



Fig. 21. Container task: after fingers made contact

Fig. 22. Container task: lifting up

Fig. 23. Container task: Final Stage


	Introduction
	Method
	IK Solver
	Grasping Algorithm
	Extensions
	Grasp Cube
	Extra Credit: Pick & Place into Container


	Results
	IK Solver Result
	Grasp Planner Loss Curve
	Stages of Grasping
	Q+, Q- Distance Table
	Grasping Plots
	Extension


	Discussion
	Bibliography
	
	Appendix

